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In the absence of volume forces, the temperature dependence of the coefficient of sur- 
face tension and the resultant thermocapillary effect are the primary influences on the sta- 
bility of the equilibrium of a non-uniformly heated fluid. If the equilibrium temperature 
gradient is sufficiently large, then the presence of thermocapillary forces at the free 
surface can lead to the onset of convective motion. 

Investigation of thermocapillary equilibrium instability with respect to monotonic 
perturbations was carried out in [1-4]. Although an attempt was made to study non-mono- 
tonic perturbations in a plane layer [5, 6], no such analysis was done for a cylindrical 
region. At the same time, it is known [7, 8] that the presence of the capillary mechanism 
of convection in the case of a cylinder gives rise to oscillatory perturbations which are 
neutrally stable. In this work, stability with respect to arbitrary perturbations of the 
equilibrium of a cylindrical layer is studied. The present numerical analysis of monotonic 
instability shows that for a deformable free surface of neutral curvature, there is not one 
curve with a point of discontinuity, but two independent curves. Each of these corresponds 
to its own type of perturbation: capillary or thermocapillary. In addition, when consid- 
ering the capillary convection mechanism, there is an oscillatory instability, which occurs 
for axisymmetric and azimuthal (m = I) perturbations. Oscillatory perturbations are sta- 
bilized by capillarity for other azimuthal modes. The presence of the thermocapillary 
mechanism was observed to Stabilize Rayleigh instabilities in the long-wavelength region. 

i. We consider a cylindrical layer of viscous, heat-conducting fluid bounded by rigid 
internal and free external surfaces, in the absence of volume forces. We introduce a cylin- 
drical coordinate system with the z axis directed along the generator of the cylinder. The 
equations of the rigid and free boundaries are r = r 0 and r = rl, respectively. The temper- 
ature dependence of the coefficient of surface tension is given by a = o0 - NO. 

Let heat sources of intensity q = const be uniformly distributed in the fluid. Then 
the equilibrium state is described by 

u = v = w = 0 ,  p = c o n s t ,  O ( r ) = q [ 2 4 1 n ( , ' / r , ) - - , ' ~ . + r ~ ] / 4 X .  (1.1) 

Here (u ,  v ,  w) a r e  t h e  components  o f  t h e  v e c t o r  v e l o c i t y ;  p i s  t h e  p r e s s u r e ;  0 i s  t h e  tem- 
p e r a t u r e ;  and • the thermal diffusivity coefficient. 

We choose as units of length, time, velocity, pressure and temperature rl, r21/v, v/rl, 
pv2/r21, ~u respectively. Here p is the density; ~ the fluid kinematic viscosity coef- 
ficient; and u = qrl/2 X. Then the expression for the equilibrium temperature takes the 
form 

@0(~) = Pr-~( 2~  tn ~ + ~ --  [2). 

We seek perturbations to the vector velocity, pressure, temperature, and normal com- 
ponent of the free surface in the form 

(u, v, w, p,  T, R) = (u(~), v(~), w(~), p(~), T(~), R) • 
• exp [i~-.~-im~ - i~C~], 

where ~, m are the axial and azimuthal wavenumbers; C = C r + iC i is the complex decrement; 
and ~ is dimensionless time. The sign of the imaginary part of the decrement serves as the 
criterion for the stability of the equilibrium state of (1.1). Values of problem parameters 
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for which C i < 0 correspond to regions of stability; if there also exist values of the 
parameters for which C i > 0, then we have instability. The case C i = 0 corresponds to the 
boundary of stability (neutral perturbations). 

The equations for small perturbations take the form [9] 

aU + P '  = - -  iczW' - -  ~ -  (~V) , ( 1 . 2 )  

~'~ [ +  v ] '  2~"u' av + T  p = ( ~ ) '  + 

, + aw + i~p ~-  (~w')', (W)' ~'~ = +.- -~-V + ial$ z = O, 

( d~ ~ ) U =  ~ bT - -  --~---  7~-(~T')' ( d < ~ < l ) ;  

a = - - i a C  @ a ~ -}- m~/~ ~, b = --i~z Pr C @ a~ + m~/~;  

t h e  c o n d i t i o n s  a t  t h e  r i g i d  boundary  (~ = d) a r e :  

at the free surface (~ = i): 

U = V = W = T ' = O ;  (1.3) 

t 

V ' - - V  + imU = - -  i m M ( T  + OoR); ( 1 . 4 )  

~ u  + w '  = - ~M ( r  + O;R); ( 1 . s )  

- - i a C R  ~ U; (1.6) 

--P+2U'=--M(T§ ~)R; (1.7) 
r' + B iT +  (0~ + Bi 0~) ~ = 0 (1 .8)  

Here ~ = r / r 1 ;  d = r 0 / r x ;  M = ~ r f x / p 9 X  i s  t h e  Marangoni  number;  We = r l o 0 / p v  2 i s  t h e  Weber 
number;  Pr  = ~/X t h e  P r a n d t l  number;  Bi = ~ r l / h  i s  t h e  B i o t  number;  and I ,  ~ a r e  t h e  c o e f -  
f i c i e n t s  o f  t h e r m a l  c o n d u c t i v i t y  and i n t e r p h a s e  h e a t  exchange .  

In  o r d e r  t o  s t u d y  t h e  t h e r m o c a p i l l a r y  mechanism of  c o n v e c t i o n  i n d e p e n d e n t l y  o f  t h e  con-  
s i d e r a t i o n  o f  c a p i l l a r i t y ,  i t  i s  u s e f u l  t o  c o n s i d e r  t h e  p rob lem in  a s i m p l i f i e d  s i t u a t i o n  
(as  was done ,  f o r  example ,  in  [1,  3 ] ) ;  namely ,  t o  c o n s i d e r  t h a t  t h e  f r e e  s u r f a c e  i s  unde-  
formed (R = 0 ) .  In  t h i s  c a s e ,  t h e  i n s t a b i l i t y  can a r i s e  o n l y  because  o f  n o n u n i f o r m i t i e s  in  
t h e  t e m p e r a t u r e  d i s t r i b u t i o n  a t  t h e  f r e e  s u r f a c e .  In  our  problem,  t h i s  c o n d i t i o n ,  e x c e p t  
f o r  t h e  c a s e s  a = 1, m = 0 and a = 0, m = 1 can f o r m a l l y  be o b t a i n e d  f rom ( 1 . 7 )  by s e t t i n g  
We = ~. Then t h e  boundary  c o n d i t i o n s  f o r  ~ = 1 t a k e  t h e  form 

V ' - -  V ~ i m M T  = 0 ,  W '  + i a M T  = 0 ,  U = 0 ,  ( 1 . 9 )  

T' + B i T  = 0 .  

For  e x c l u s i o n s  l i s t e d  above ,  f o r  m = 0, t h e  l i n e  a = 1 c o r r e s p o n d s  t o  t h e  R a y l e i g h  i n -  
s t a b i l i t y  boundary  [9] and f o r  t h e  t h e r m o c a p i l l a r y  mechanism s t u d i e d  h e r e ,  i s  n o t  c o n s i d e r e d .  
For a = 0, m = 1 only the trivial solution holds [4]. 

2. We carry out an asymptotic analysis of the long-wavelength perturbations (a + 0) 
for m = 0. In this case, the problem for the function V is separate. Letting We = ~, and 
setting =C = O(a), we obtain the characteristic equation governing the complex decrement: 

?[Ja(g)Y~(yd) - -  Yl (y)J~(?d)  l + Bi [Yo(?)J~(?d) - -  ]o(g)Y~(?d) ] = 0 ( 2 . 1 )  

(Y = (i~CPr)I/2; J0, J1, Y0, Yz are Bessel functions of first and second kind). Equation 
(2.1) has a countable number of real roots. 

If Wei~ ~, then assuming that C = 0(=), T = O(i/a) for = + 0, Bi ~ 0, we find 

C =  --J~'~ (We [ ( 1 4  % d9")2 + ~ d~ + l n d ]  - - M ( I  + df)[ (t --d~)24 + 3 ( 1 - - ~ + d  2) 31nd]}. ( 2 . 2 )  

Analysis of (2.1) and (2.2) shows that for m = 0, Bi ~ 0, long-wavelength perturbations are 
always monotonic, and for We = ~, the equilibrium state is stable. 

The solution of (1.2)-(1.8) for monotonic, neutral perturbations (C = 0) is constructed 
in [4]. The analytic dependence obtained there of the Marangoni number on the remaining 
parameters was used as a check on the calculations. 
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3. Numerical solution of (1.2)-(1.8) was carried out by using the method of ortho- 
gonalization. The asymptotic values found from (2.1), (2.2) were used as starting approxi- 
mations. The effect of capillary and thermocapillary mechanisms on the stability of equili- 
brium was studied in the case of a melt of germanium with Pr = 0.016, Bi = 2. We consider 
an axisymmetric perturbation (m = 0), setting d = 0.I. 

Let the free surface be undeformable (We = =). The calculations show that in this 
case, the loss of stability occurs at M > 216, which coincides with the results of [4]. 
Moreover, for all ~, it was found that C r = 0. Figure 1 shows the results of calculations 
of C i versus ~ for the most dangerous modes, constructed for M = 300 and 80 (curves 1 and 
2). The corresponding neutral curve is shown in Fig. 2 (curve I). Thus analysis of the 
numerical and analytical results shows that in the case of a nondeformable free surface (the 
thermocapillary mechanism arises by convection), only monotonic perturbations are realized. 

Taking the deformation of the free surface into account leads to equilibrium destabili- 
zation. In this case, the spectrum of the most dangerous perturbations has a more complex 
form, shown in Fig. ! for M = 80. Curve 3 illustrates the change in the thermocapillary 
mode with decreasing Weber number. Note that C r is always equal to zero for this mode, in- 
dependent of We. The neutral curve for We = 104 , which corresponds to this perturbation, 
is shown in Fig. 2 (curve 2). In addition, accounting for the deformation of the free sur- 
face leads to the appearance of a new mechanism of instability. As shown in Fig. 1, two 
new modes appear in this case, which are monotonic in the region of small ~ (curves 4, 5). 
Here curve 4 lies in the upper half plane and begins with the asymptote (2.2). The inter- 
section points of curve 5 with the axis C i = 0 (~ = 0.53 for M = 80) form a monotonic capil- 
lary neutral curve, which is shown in Fig. 2 (curve 3) for We = i0 ~. With increasing 
Marangoni number, curves 4 and 5 are joined from below and for 94.5 < M < 95.6, the mono- 
tonic capillary curve is determined by the intersection points of curve 4 with the axis 
C i = 0. For M > 95.6, the monotonic instability in the region of small ~ disappears. 

Let us examine the onset of oscillatory instability. As shown in Fig. I, with in- 
creasing ~, the monotonic capillary modes merge, forming a complex-conjugate pair. The 
imaginary part of the decrement in Fig. 1 corresponds to curve 6. The neutral curve for 
oscillatory instability is shown in Fig. 2 (curve 4). It consists of two parts connected 
together by curve 3; the transition points from one curve to the other are: ~ = 0.16, M = 
94.5, and ~ = 0.95, M = 18.9. 

In addition to heating of the fluid, an analogous mechanism for the onset of oscilla- 
tory instability pertains during coolong as well. In this case, as shown in Fig. 2, the 
neutral curve of oscillatory perturbations (curve 5) branches from the neutral curve of 
capillary monotonic perturbations. The stability region in Fig. 2 is bounded on the left 
and from below by curve 3 for 0.95 < ~ < 1.14, and by curve 5 for 1.14 < ~ < 1.56. The 
boundary continues from above along curve 4 for 0.95 < ~ < 1.92 and along curve 2 for ~ > 
1.92. There is in addition, an "islet of stability" in the small wavenumber region, bounded 
from above by the left part of curve 4 and from below by the straight line M = 95.6. Note 
that curve 5 and the upper branch of curve 4 have the same asymptote ~ = 1.56, and conse- 
quently, similar behavior of the neutral curves is observed for both monotonic and oscilla- 
tory perturbations. 

Thus all perturbations are divided into two types: thermal and capillary, each of 
which has its own instability mechanism. The thermal instability is caused by the presence 
of temperature nonuniformities at the free surface and the associated thermocapillary effect. 
Perturbations of this type are always monotonic and play a leading role at large wavenum- 
bers. This instability mechanism was first described in [i]. 
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Capillary perturbations arise due to the deformability of the free boundary and take 
the form of a pair of waves moving along the surface. This type of instability dominates 
at small ~ and was first investigated by Rayleigh [7]. The simultaneous effect of both 
mechanisms leads to the onset of oscillatory perturbations, with respect to which the in- 
stability is possible only in a bounded wavenumber interval (~ < 1.95 for We = 104). In 
this case, the short-wavelength perturbations are stabilized by surface tension forces. In 
addition, the presence of the thermocapillary convection mechanism stabilizes the Rayleigh 
instability in the long-wavelength region. 

The above description of the most dangerous perturbations is characteristic of non- 
vanishing Biot numbers. If the free surface is thermally insulated (Bi = 0), then there 
will be another mechanism for the onset of oscillatory perturbations. Figure 3 shows a 
plot of capillary modes constructed for Bi = 0, M = 2, and We = 104 . It is evident that 
the long-wavelength perturbations are always oscillatory and that the equilibrium state is 
unstable with respect to these perturbations. With decreasing wavelength, the oscillatory 
mode (curve i) decays to two monotonic branches (curves 2, 3), the lower of which inter- 
sects the axis C i = 0 and forms a monotonic neutral curve. With subsequent increase in 
wavenumber, the monotonic modes merge, once again forming a complex-conjugate pair (curve 
4). The corresponding neutral curves are shown in Fig. 4. Here, curves i and 2 are due to 
monotonic perturbations, and curves 3, 4 to oscillatory perturbations. The region of sta- 
bility is simply connected and is bounded on the left by curves 2 and 3. 

Let us examine the influence of other parameters of this problem on the behavior of the 
neutral curves. An interesting effect was observed with decreasing dimensionless layer 
thickness, namely: with growth in d, the transition points of the oscillatory neutral 
curve to the monotonic curve are shifted towards one another and for a some do, a "bridge" 
appears between the regions of stability. As an illustration, we examine Fig. 5, which 
shows the neutral curves constructed for d = 0.5, Bi = 2, and We = 104 (for these values of 
Bi and We, we obtain d o = 0.447). The region of stability is shaded. Similar behavior of 
the neutral curves is also observed for decreasing Pr. In this case, the formation of the 
connected region of stability takes place at very small values of Pr (on the order of 10-4). 
In addition, decreases in Pr lead to destabilization of equilibrium. 

Let us examine azimuthal perturbations (m ~ 0). It is known [8] that in the presence 
of the capillary mechanism of convection, these perturbations are always stable. However, 
taking thermocapillarity into account leads to the appearance of an oscillatory instability, 
which can be the most dangerous. Figure 6 Shows the neutral curves constructed for m = i, 
Bi = 2, Pr = 0.016, and We = 104 (curves i, 2 correspond to monotonic, and curves 3, 4 to 
oscillatory perturbations). Thus, there is a qualitative coincidence of behavior of the 
azimuthal and axisymmetric neutral curves. In this case, the axisymmetric perturbations 
will be more dangerous than the azimuthal perturbations. The numerical analysis given here 
shows that oscillatory instability is possible only for m = i. With increasing azimuthal 
wavenumber, the oscillatory perturbations are stabilized by capillarity. 
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CALCULATION OF THE FLOW FIELD PAST SPHERICALLY 

BLUNTED CONES NEAR THE PLANE OF SYMMETRY FOR 

VARIOUS SHOCK LAYER FLOW REGIMES WITH 

INSUFFLATION OF GAS FROM THE SURFACE 

A. V. Bureev and V. I. Zinchenko UDC 533.6.011.536.24 

We investigated flow past a cone, which has been blunted in a spherical fashion, over 
a wide range of Reynolds numbers. Various flow regimes were realized in the shock layer. 
The study was done within the framework of a completely viscous shock layer model, near the 
plane of symmetry of the flow. In the shock layer for this flow, the problem of self-con- 
sistent calculation for the plane of symmetry was treated in [i, 2] by means of a Fourier 
series expansion of the pressure in terms of the circumferential coordinate. In [3], a 
prescribed pressure gradient in the circumferential coordinate taken from tables of inviscid 
flow was used to model a thin viscous shock layer. Here, we apply the truncated series 
procedure [4], and analyze the effect of the angle of attack ~A and taper angle ~ on the 
heat exchange characteristics. The case where ~A is significantly larger than $ is included 
in our analysis. We also analyze the effect of discharge quantity and the distribution law 
of gas insufflating through a porous, spherical shell on the heat exchange characteristics~ 

I. Let us write out the system of equations for a viscous shock layer in the neighbor- 
hood of the flow plane of symmetry in the natural coordinate system (s, ~, n), attached to 
the body axis of symmetry. Using an expansion of the coefficients and unknown functions of 
the form 

i = i o + / : ~  ~ + . . .  ( i = ~ ,  v , H ,  o, ~ , p , h ,  n~), 
o~ = co1~ + ... 
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